• M. Sinstein, C. Scheurer, S. Matera, V. Blum, K. Reuter, H. Oberhofer, An efficient implicit solvation method for full potential DFT, J. Chem. Theor. Comput. published online (2017),
  • H. Oberhofer, K. Reuter, J. Blumberger, Charge Transport in Molecular Materials: An Assessment of Computational Methods, Chem. Rev. 117, 10319 (2017),
  • S. Ringe, H. Oberhofer, K. Reuter, Transferable Ionic Parameters for First-Principles Poisson-Boltzmann Solvation Calculations: Neutral Solutes in Aqueous monovalent Salt Solutions, J. Chem. Phys. 146, 134103 (2017),
  • J.F. Eckhard, D. Neuwirth, C. Panosetti, H. Oberhofer, K. Reuter, M. Tschurl, U. Heiz, Consecutive reactions of small, free tantalum clusters with dioxygen controlled by relaxation dynamics, Phys. Chem. Chem. Phys. (2017),
  • K. Reuter, C.P. Plaisance, H. Oberhofer, M. Andersen, Perspective: On the active site model in computational catalyst screening, J. Chem. Phys. 146, 040901 (2017),


  • T. Stecher, K. Reuter, H. Oberhofer, First-Principles Free-Energy Barriers for Photoelectrochemical Surface Reactions: Proton Abstraction at TiO2 (110), Phys. Rev. Lett. 117, 276001 (2016),
  • A. Kubas, D. Berger, H. Oberhofer, D. Maganas, K. Reuter, and F. Neese, Surface Adsorption Energetics Studied with Gold Standard Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110), J. Phys. Chem. Lett. 7, 4207 (2016),
  • C. Schober, K. Reuter, and H. Oberhofer, Virtual Screening for High Carrier Mobility in Organic Semiconductors, J. Phys. Chem. Lett. 7 3973 (2016),
  • S. Ringe, H. Oberhofer, C. Hille, S. Matera, K. Reuter, Function-Space Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT, J. Chem. Theor. Comput. 12 4052 (2016),
  • A.M. Reilly,, Report on the sixth blind test of organic crystal-structure prediction methods, Acta Crystallogr. Sect. B 72, 439 (2016),
  • RJ. Maurer, W. Liu, I. Poltavsky, T. Stecher, H. Oberhofer, K. Reuter, A. Tkatchenko, Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111), Phys. Rev. Lett. 116 146101 (2016),
  • C. Schober, K. Reuter, H. Oberhofer, Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values, J. Chem. Phys. 144 054103 (2016),


  • D. Berger, H. Oberhofer, K. Reuter, First-principles embedded-cluster calculations of the neutral and charged oxygen vacancy at the rutile TiO2 (110) surface, Phys. Rev. B 92 075308 (2015),
  • Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Bräse, K. Reuter, C. Wöll, Photoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs, Phys. Chem. Chem. Phys. 17 14582 (2015),
  • A. Kubas, F. Gajdos, A. Heck, H. Oberhofer, M. Elstner, J. Blumberger, Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations II, Phys. Chem. Chem. Phys. 17 14342 (2015),


  • D. Berger, A.J. Logsdail, H. Oberhofer, M.R. Farrow, C.R.A. Catlow, P. Sherwood, A.A. Sokol, V. Blum, and K. Reuter, Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework, J. Chem. Phys. 141 24105 (2014),
  • A. Kubas, F. Hoffmann, A. Heck, H. Oberhofer, M. Elstner, J. Blumberger, Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations, J. Chem. Phys. 140 104105 (2014),


  • V. Schott, H. Oberhofer, A. Birkner, M. Xu, Y. Wang, K. Reuter, and Ch. Wöll, Chemical activity of thin oxide layers: Strong support interactions yielding a new thin film phase of ZnO, Angew. Chem. Int. Ed. 52 11925 (2013),
  • H. Oberhofer and K. Reuter, First-principles thermodynamic screening approach to photo-catalytic water splitting with co-catalysts, J. Chem. Phys. 139 044710 (2013),
  • F. Gajdos, H. Oberhofer, M. Dupuis, J. Blumberger, On the Inapplicability of Electron Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM), J. Phys. Chem. Lett. 4 1012 (2013),


  • H. Oberhofer and J. Blumberger, Revisiting electronic couplings and hopping models for electron transport in crystalline C60 at ambient temperatures, Phys. Chem. Chem. Phys. 14 13846 (2012),


  • M. Alfonso-Prieto, H. Oberhofer, M. L. Klein, C. Rovira, and J. Blumberger, Proton transfer drives protein radical formation in Helicobacter pylori catalase but not in Penicillium vitale catalase, J. Am. Chem. Soc. 133 4285 (2011),


  • H. Oberhofer and J. Blumberger, Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane-wave basis set, J. Chem. Phys. 133 244105 (2010),
  • V. Tipmanee, H. Oberhofer, M. Park, K. S. Kim, and J. Blumberger, Prediction of Reorganization Free Energies for Biological Electron Transfer: A Comparative Study of Ru-Modified Cytochromes and a 4-Helix Bundle Protein, J. Am. Chem. Soc. 132 17032 (2010),
  • H. Oberhofer and J. Blumberger, Insight into the mechanism of the Ru2+ - Ru3+ electron self-exchange reaction from quantitative rate calculations, Angew. Chem. Int. Ed. 49 3631 (2010),


  • H. Oberhofer and J. Blumberger, Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions, J. Chem. Phys. 131 64101 (2009),
  • H. Oberhofer and C. Dellago, Efficient extraction of free energy profiles from non-equilibrium experiments, J. Comp. Chem. 30 1726 (2009),




  • W. Lechner, H. Oberhofer, C. Dellago, and P. L. Geissler, Equilibrium free energies from fast-switching trajectories with large time steps, J. Chem. Phys. 124 44113 (2006),


  • H. Oberhofer, C. Dellago, and P. L. Geissler, Biased sampling of nonequilibrium trajectories: Can fast switching simulations outperform conventional free energy calculation methods?, J. Phys. Chem. B 109 6902 (2005),
  • T. F. Miller, D. E. Manolopoulos, P. A. Madden, M. Konieczny, and H. Oberhofer, Comment on ”A centroid molecular dynamics study of liquid para hydrogen and ortho deuterium” [J. Chem. Phys. 121, 6412 (2004)], J. Chem. Phys. 122 57101 (2005),